Extensions 1→N→G→Q→1 with N=C22 and Q=S3wrC2

Direct product G=NxQ with N=C22 and Q=S3wrC2
dρLabelID
C22xS3wrC224C2^2xS3wrC2288,1031

Semidirect products G=N:Q with N=C22 and Q=S3wrC2
extensionφ:Q→Aut NdρLabelID
C22:1S3wrC2 = C62:D4φ: S3wrC2/C32:C4C2 ⊆ Aut C22248+C2^2:1S3wrC2288,890
C22:2S3wrC2 = D6wrC2φ: S3wrC2/S32C2 ⊆ Aut C22124+C2^2:2S3wrC2288,889

Non-split extensions G=N.Q with N=C22 and Q=S3wrC2
extensionφ:Q→Aut NdρLabelID
C22.1S3wrC2 = C62.13D4φ: S3wrC2/C32:C4C2 ⊆ Aut C22488-C2^2.1S3wrC2288,885
C22.2S3wrC2 = C62.2D4φ: S3wrC2/S32C2 ⊆ Aut C22244+C2^2.2S3wrC2288,386
C22.3S3wrC2 = Dic3wrC2φ: S3wrC2/S32C2 ⊆ Aut C22244-C2^2.3S3wrC2288,389
C22.4S3wrC2 = C62.9D4φ: S3wrC2/S32C2 ⊆ Aut C22244C2^2.4S3wrC2288,881
C22.5S3wrC2 = C62.12D4φ: S3wrC2/S32C2 ⊆ Aut C22244C2^2.5S3wrC2288,884
C22.6S3wrC2 = C62.15D4φ: S3wrC2/S32C2 ⊆ Aut C22484-C2^2.6S3wrC2288,887
C22.7S3wrC2 = C62.D4central extension (φ=1)48C2^2.7S3wrC2288,385
C22.8S3wrC2 = C62.3D4central extension (φ=1)48C2^2.8S3wrC2288,387
C22.9S3wrC2 = C62.4D4central extension (φ=1)96C2^2.9S3wrC2288,388
C22.10S3wrC2 = C62.6D4central extension (φ=1)96C2^2.10S3wrC2288,390
C22.11S3wrC2 = C62.7D4central extension (φ=1)96C2^2.11S3wrC2288,391
C22.12S3wrC2 = C2xS32:C4central extension (φ=1)24C2^2.12S3wrC2288,880
C22.13S3wrC2 = C2xC3:S3.Q8central extension (φ=1)48C2^2.13S3wrC2288,882
C22.14S3wrC2 = C2xC32:D8central extension (φ=1)48C2^2.14S3wrC2288,883
C22.15S3wrC2 = C2xC32:2SD16central extension (φ=1)48C2^2.15S3wrC2288,886
C22.16S3wrC2 = C2xC32:Q16central extension (φ=1)96C2^2.16S3wrC2288,888

׿
x
:
Z
F
o
wr
Q
<